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We propose a method for supervised learning with multiple sets of features (“views”).
The multiview problem is especially important in biology and medicine, where “-omics”
data, such as genomics, proteomics, and radiomics, are measured on a common set of
samples. “Cooperative learning” combines the usual squared-error loss of predictions
with an “agreement” penalty to encourage the predictions from different data views to
agree. By varying the weight of the agreement penalty, we get a continuum of solutions
that include the well-known eatly and late fusion approaches. Cooperative learning
chooses the degree of agreement (or fusion) in an adaptive manner, using a validation set
or cross-validation to estimate test set prediction error. One version of our fitting proce-
dure is modular, where one can choose different fitting mechanisms (e.g., lasso, random
forests, boosting, or neural networks) appropriate for different data views. In the setting
of cooperative regularized linear regression, the method combines the lasso penalty with
the agreement penalty, yielding feature sparsity. The method can be especially powerful
when the different data views share some underlying relationship in their signals that can
be exploited to boost the signals. We show that cooperative learning achieves higher pre-
dictive accuracy on simulated data and real multiomics examples of labor-onset predic-
tion. By leveraging aligned signals and allowing flexible fitting mechanisms for different
modalities, cooperative learning offers a powerful approach to multiomics data fusion.

data fusion | multiomics | supervised learning | sparsity

With new technologies in biomedicine, we are able to generate and collect data of
various modalities , including genomics, epigenomics, transcriptomics, proteomics, and
metabolomics (Fig. 14). Integrating heterogeneous features on a common set of observa-
tions provides a unique opportunity to gain a comprehensive understanding of an outcome
of interest. It offers the potential for making discoveries that are hidden in data analyses of
a single modality and achieving more accurate predictions of the outcome (1-6). While
“multiview data analysis” can mean different things, we use it here in the context of
supervised learning, where the goal is to fuse different data views to model an outcome of
interest.

To give a concrete example, assume that a researcher wants to predict cancer outcomes
from RNA expression and DNA-methylation measurements for a set of patients. The
researcher suspects that: 1) Both data views potentially have prognostic value; and 2)
the two views share some underlying relationship with each other, as DNA methylation
regulates gene expression and can repress the expression of tumor suppressor genes or
promote the expression of oncogenes. Should the researcher use both data views for
downstream prediction, or just use one view or the other? If using both views, how can
the researcher leverage their underlying relationship in making more accurate predictions?
Is there a way to strengthen the shared signals in the two data views, while reducing
idiosyncratic noise?

There are two broad categories of existing “data fusion methods” for the multiview
problem (Fig. 1B). They differ in the stage at which the “fusion” of predictors takes place,
namely, early fusion and late fusion. Early fusion works by transforming the multiple
data views into a single representation before feeding the aggregated representation into
a supervised learning model of choice (7-10). The simplest approach is to column-wise
concatenate the M datasets X1, ..., Xjs to obtain a combined matrix X, which is then
used as the input to a supervised learning model. Another type of early fusion approach
projects each high-dimensional dataset into a low-dimensional space using methods such
as principal component analysis or autoencoders (11, 12). Then, one combines the low-
dimensional representations through aggregation and feeds the aggregated matrix into a
supervised learning model. Early fusion approaches have an important limitation that
they do not explicitly leverage the underlying relationship across data views. Late fusion,
or “integration,” refers to methods where individual models are first built from the distinct
data views, and then the predictions of the individual models are combined into the final
predictor (13-17).

In this paper, we propose a method to multiview data analysis called “cooperative
learning,” a supervised learning approach that fuses the different views in a systematic way.
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Fig. 1.

Framework for multiomics data fusion. (A) Advances in biotechnologies have enabled the collection of a myriad of “-omics” data, ranging from genomics

to proteomics, measured on a common set of samples. These data capture the molecular variations of human health at multiple levels and can help us
understand complex biological systems in a more comprehensive way. Fusing the data offers the potential to improve predictive accuracy of disease phenotypes
and treatment response, thus enabling better diagnostics and therapeutics. However, multiview analysis of omics data presents challenges, such as increased
dimensionality, noise and complexity. (B) Commonly used approaches to the problem can be broadly categorized into early and late fusion. Early fusion begins by
transforming all datasets into a single representation, which is then used as the input to a supervised learning model of choice. Late fusion works by developing
first-level models from individual data views and then combining the predictions by training a second-level model as the final predictor. Encompassing early
and late fusion, cooperative learning combines the usual squared error loss of predictions with an agreement penalty term to encourage the predictions from

different data views to align.

The method combines the usual squared error loss of predictions
with an “agreement” penalty that encourages the predictions from
different data views to align. By varying the weight of the agree-
ment penalty, we get a continuum of solutions that include the
commonly used early and late fusion approaches. Our proposal
can be especially powerful when the different data views share
some underlying relationship in their signals that can be leveraged
to strengthen the signals.

Cooperative Learning

Cooperative Learning with Two Data Views. We begin with a
simple form of our proposal for the population (random variable)
setting. Let X € R™*P=, Z € R™*P-—representing two data
views—and y € R" be a real-valued random variable (the target).
Fixing the hyperparameter p > 0, we propose to minimize the
population quantity:

1
min B[ 3 (y = fx(X) = f2(2))* + SUx (X) — f2(2))?]
(1]
The first term above is the usual prediction error, while the
second term is an agreement penalty, encouraging the predictions
from different views to agree. This penalty term is related to
“contrastive learning” (18, 19), which we discuss in more detail
in Materials and Methods.

The solution to Eq. 1 has fixed points:
Yy 1-p)fz(Z
1) )

fX(X):E[

I+p  (1+p)
ez =[RS

We can optimize the objective by repeatedly updating the fit
for each data view in turn, holding the other view fixed. When
updating a function, this approach allows us to apply the fitting
method for that data view to a penalty-adjusted “partial residual.”
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For more than two views, this generalizes easily (Materials and
Methods).

The following relationships to early and late fusion can be seen
immediately:

o If p=0, from Eq. 1, we see that cooperative learning chooses
a functional form for fx and fz and fits them together. If
these functions are additive (for example, linear), then it yields a
simple form of early fusion, where we simply use the combined
set of features in a supervised learning procedure.

o If p=1, then from Eq. 2, we see that the solutions are the
average of the marginal fits for X and Z. This is a simple form
of late fusion.

We explore the relation of cooperative learning to early/late fusion
in more detail in Relation to Early/Late Fusion, in the setting of
regularized linear regression.

Note that this “one-at-a-time” fitting procedure is modular, so
that we can choose a fitting mechanism appropriate for each data
view. Specifically:

e For quantitative features like gene expression, copy number
variation, or methylation: regularized regression (lasso or elastic
net), a generalized additive model, boosting, random forests, or
neural networks.

e For images: a convolutional neural network (CNN).

e For time-series data: an autoregressive model or a recurrent
neural network.

We illustrate this on a simulated image and omics example in
Results.

Cooperative Regularized Linear Regression. We make our pro-
posal more concrete in the setting of cooperative regularized linear
regression. Consider feature matrices X € R"*Pr, Z € R"*Ps,
and our target y € R™. We assume that the columns of X and
Z have been standardized, and y has mean zero (hence, we can
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omit the intercept below). For a fixed value of the hyperparameter
p > 0, we want to find 8, € RP= and 6, € RP= that minimize:

1 14
J(0:,0:) = 5lly — X0, — 20.|]” + S ||(X 6, — 26.)|?
+ A P?(0) + N\, P*(6,), (3]

where p is the hyperparameter that controls the relative impor-
tance of the agreement penalty term ||(X 6, — Z0,)||? in the
objective, and P* and P? are penalty functions. Most commonly,
we use £1 penalties, giving the objective function:

1
J(6:,6:) = Slly — X0, — 20| + 5|(X6, — 26.)|

Note that when p = 0, this reduces to early fusion, where we
simply concatenate the columns of X and Z and apply lasso.
Furthermore, in Relation to Early/Late Fusion, we show that p =1
yields a late fusion estimate.

In our experiments, we standardize the features and simply
take A\; = A, = A. We have found that, generally, there is often
no advantage to allowing different A values for different views.
However, for completeness, in S/ Appendix, section 1, we outline
an adaptive strategy for optimizing over \; and A,. We call this
“adaptive cooperative learning” in our studies.

With a common A, the objective becomes

1 p
ﬂ%ﬁJ:jwa%*Z@W+§WX%*Z@N2

and we can compute a regularization path of solutions indexed by
A

Problem [5] is convex, and the solution can be computed as
follows. Letting

(e o (ae(2). o

then the equivalent problem to Eq. 5 is

1 .-
18 = XBI + (110211 +1162]]1)- (71

This is a form of the lasso and can be computed, for example,
by the glmnet package (20). This problem has 2n observations
and p; + p, features.

Let Lasso(X, ¥, A) denote the generic problem:

1
ming o [|y — XB||* + Al|B||1- [8]

We outline the direct algorithm for cooperative regularized
regression in Algorithm 1.

Remark A: We note that for cross-validation (CV) to estimate A
and p, we do not form folds from the rows of X, but, instead,
form folds from the rows of X and Z and then construct the
corresponding X .

Remark B: We can add {5 penalties to the objective in Eq. 5,
replacing A([|0z|]1 + ||602]]1) by the elastic net form

A1 = )18l +10:110)+a(16213/2 + 116:13/2)] . 19)
This leads to elastic net fitting, in place of the lasso, in the

last step of the algorithm. This option is included in our publicly
available software implementation of cooperative learning.
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Algorithm 1 Direct Algorithm for Cooperative Regularized
Regression:

Input: X € R™"*P» and Z € R™*P, the response y € R", and
a grid of hyperparameter values (Oyin, - - -  Pmax)-
for p < pPuin, - - - 5 Puax do

Set
5 X Z _ Yy
X = = .
(Jox o= (1)
Solve Lasso(X, %, \) over a decreasing grid of A values.
end
Select the optimal value of p* based on the CV error and get the
final fit.

We show here an illustrative simulation study of cooperative
learning in the regression setting in Fig. 24. We will discuss more
comprehensive studies in Resulss. In Fig. 24, the first and second
plots correspond to the settings where the two data views X and Z
are correlated, while in the third plot, X and Z are uncorrelated.
We see that when the data views are correlated, cooperative
learning offers significant performance gains over the early and
late fusion methods, by encouraging the predictions from different
views to agree. When the data views are uncorrelated and only one
view X contains signal as in the third plot, early and late fusion
methods hurt performance, as compared to the separate model fit
on only X, while adaptive cooperative learning is able to perform
on par with the separate model.

One-at-a-Time Algorithm for Cooperative Regularized Linear
Regression. As an alternative, one can optimize Eq. 4 by itera-
tively optimizing over 8, and 8, fixing one and optimizing over
the other. The updates are as follows:

3 1-p)Z0,
Oz :LaSSO(X,y;,)\I),Wherey; — Y _ ( p) ,
L+p (1+p)
0, =Lasso(Z,ys,\,), wherey} = 1+p_ e z
[10]

This is analogous to the general iterative procedure in Eq. 2. It
is summarized in Algorithm 2.

Algorithm 2 One-at-a-Time Algorithm for Cooperative Regularized

Regression:

Input: X € R"*P» and Z € R"*P=, the response y € R", and
a grid of hyperparameter values (Pnin, - - - ; Pmax)-

Fix the lasso penalty weights A, and A, for p < ppin, . ..
do
Initialize 93(30) € RP+ and 020) € RP=. for k<+0,1,2,...
until convergence do
y (1-p)zeP
1+p (14p)

0;k+1) to be the solution.

) pmax

Set yi = . Solve Lasso(X,y%k, ;)

and update

y _ (1—p)Xe{tV
I+p (1+p) :

OQH_I) to be the solution.

Set Yy = Solve Lasso(Z, y%, \,)

and update
end

end

Select the optimal value of p* based on the sum of the CV errors

and get the final fit.
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Fig. 2. Anillustrative simulation study of cooperative learning in the regression setting and sparsity of the solution. (A4) Cooperative learning achieves superior
prediction accuracy on a test set when the data views X and Z are correlated. The y axis shows the MSE on a test set. The methods in comparison from left
to right in each panel correspond to 1) Separate X: lasso applied on the data view X only; 2) Separate Z: lasso applied on the data view Z only; 3) Early fusion:
lasso applied on the concatenated data views of X and Z; 4) Late fusion: separate lasso models are fit on X and Z independently and the predictors are then
combined through linear LS; 5) Coop: cooperative learning as outlined in Algorithm 1; and 6) Adap Coop: adaptive cooperative learning, as outlined in Algorithm
S2 (SI Appendix, section 1). Note that the test MSE in each panel is of a different scale because we experiment with simulating the data of different SNRs. We
conducted each simulation experiment 10 times. (B) The number of nonzero coefficients as a function of the ¢; norm of the solution with different values of the

weight on the agreement penalty term p: The solution becomes less sparse as p increases.

By iterating back and forth between the two lasso problems,
we can find the optimal solution to Eq. 4. When both X and Z
have full column rank, Eq. 4 is strictly convex, and each iteration
decreases the overall objective value. Therefore, the one-at-a-time
procedure is guaranteed to converge. In general, it can be shown
to converge to some stationary point, using results such as those
in (21). This algorithm uses fixed values for Az, A,: we need to
run the algorithm over a grid of such values, or use CV to choose
Az, A, within each iteration.

With just two views, there seems to be no advantage to this
approach over the direct solution given in Algorithm 1. However,
for a larger number of views, there can be a computational
advantage, which we will discuss in Materials and Methods.

Relation to Early/Late Fusion. From the objective functions Egs.
3 and 4, when the weight on the agreement term p is set to zero,
cooperative learning (regression) reduces to a form of early fusion:
We simply concatenate the columns of different views and apply
lasso or another regularized regression method.

Next, we discuss the relation of cooperative learning to late
fusion. Let X and Z have centered columns and y centered; from
Eq. 6, we obtain

%T% — (XTX(I +p)

XTZ(1 - p)
ZTX(1 - p) p)' (1]

ZTZ(1+ p)
Assuming X and Z have full rank, and omitting the ¢;

penalties, we obtain the least-squares estimates

0.\ _ (X"X(1+p) XTZ(1-p)\  (XTy
6.) ~\zTx(1-p) zTZ(1+)p) ZTy )"
(12]
If XTZ =0 (uncorrelated features between the views), this
reduces to a linear combination of the least squares estimates for
each block; when p = 1, itis simply the average of the least squares
estimates for each block. The above relation also holds when we
include the ¢; penalties.
This calculation suggests that restricting p to be in [0, 1] would
be natural. However, we have found that values larger than one
can sometimes yield lower prediction error (Resulzs).

Sparsity of the Solution. We explore how the sparsity of the
solution depends on the agreement hyperparameter p in Fig. 2B.
We did 100 simulations of Gaussian data with n =100 and
p =20 in each of two views, with all coefficients equal to 2.0.
The SD of the errors was chosen so that the signal-to-noise ratio
(SNR) was about two. The figure shows the number of nonzero
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coeflicients as a function of the overall /1 of the solutions, for
different values of p. Note that the lasso parameter A is varying
along the horizontal axis; we chose to plot against the ¢; norm, a
more meaningful quantity. We see that the solutions become less
sparse as p increases, much like the behavior that one sees in the
elastic net.

Theoretical Analysis under the Latent Factor Model. To
understand the role of the agreement penalty from a theoretical
perspective, we consider the following latent factor model. Let
u= (U, Us,..., U,) be a vector of n independent and iden-
tically distributed (i.i.d.) random variables with U; ~ N(0, 1),
y:(yl,...7yn), a::(Xl,...,Xn), and z:(Z17~-~7Zn))
with Yi =Yy U; + Eyis Xi=v,U; + €4, and Z; = v, U; +
€z, where g, ~ N (0,02), e ~N (0,02), and e~
N (0,02) independently. We show that the mean squared error
(MSE) of the predictions from cooperative learning is a decreasing
function of p around zero with high probability (see details in
SI Appendix, section 4). Therefore, the agreement penalty offers
an advantage in reducing MSE of the predictions under the latent
factor model.

Results

Simulation Studies on Cooperative Regularized Linear Regres-
sion. Here, we compare cooperative learning in the regression
setting with early and late fusion methods in simulations. We
generated Gaussian data with n =200 and p =500 in each
of two views X and Z and created correlation between them
using latent factors. The response y was generated as a linear
combination of the latent factors, corrupted by Gaussian noise.
We introduced sparsity by letting some columns of X and Z have
no effect on y. The detailed simulation procedure is outlined in
Materials and Methods. Datasets are simulated with different levels
of correlation between the two data views X and Z, different
contributions of X and Z to the signal, and different SNRs. We
consider the settings of both small-p and large-p regimes and of
both low- and high-SNR ratios. We use 10-fold CV to select the
optimal values of hyperparameters.

We compare the following methods: 1) separate X and separate
Z: the standard lasso is applied on the separate data views of X and
Z with 10-fold CV; 2) early fusion: the standard lasso is applied
on the concatenated data views of X and Z with 10-fold CV
(note that this is equivalent to cooperative learning with p = 0);
3) late fusion: separate lasso models are first fitcted on X and Z
independently with 10-fold CV, and the two resulting predictors

pnas.org
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Simulation studies on cooperative regularized linear regression. (A) Simulation results when X and Z have a medium level of correlation and both

contain signal (ty = t; = 2), n = 200, p = 1,000, and SNR = 1.8. The first panel shows MSE on a test set; the second panel shows the MSE difference on the
test set relative to early fusion; the third panel shows the number of features selected; and the fourth panel shows the p values selected by CV in cooperative
learning. Here, “Coop” refers to cooperative learning outlined in Algorithm 1, and “Adap Coop” refers to adaptive cooperative learning outlined in Algorithm S2
(S/ Appendix, section 1). (B) Simulation results when X and Z have a high level of correlation and X contains more signal than Z (ty = 6, t, = 1), n = 200, p = 1,000,

and SNR = 0.6.

are then combined through linear least squares (LS) for the final
prediction; and 4) cooperative learning (regression) and adaptive
cooperative learning. We evaluated the performance based on the
MSE on a test set and conducted each simulation experiment 10
times.

Opverall, the simulation results can be summarized as follows:

o Cooperative learning performs the best in terms of test MSE
across the range of SNR and correlation settings. It is most
helpful when the data views are correlated and both contain
signal (as in Fig. 3 4 and B). When the correlation between
data views is higher, higher values of p are more likely to be
selected.

e When only one view contains signal and the views are not
correlated (87 Appendix, Fig. S3C), cooperative learning is out-
performed by the separate model fit on the view containing
the signal, but adaptive cooperative learning is able to perform
on par with the separate model, outperforming early and late
fusion.

e Moreover, we also find that cooperative learning tends to yield
a less sparse model, as expected from the results of Sparsity of the
Solution.

We include more comprehensive results across a wider range of
simulation settings in S/ Appendix, Figs. S1-S6.

Simulation Studies on Cooperative Learning with Imaging and
“Omics” Data. Here, we extend the simulation studies for cooper-
ative learning to the setting where we have two data views of more
distinct data modalities, such as imaging and omics data (e.g.,

PNAS 2022 Vol. 119 No.38 e2202113119

transcriptomics and proteomics). We tailor the fitter suitable to
each view, i.e., CNNs for images and lasso for omics. We simulate
the omics data (X) and the “imaging” data (Z) such that they
share some common factors. These factors are also used to generate
the signal in the response y. We use a factor model to generate the
data, as it is a natural way to create correlations between X, Z,
and y. In S7 Appendix, section 6, we outline the full details of the
simulation procedure. Fig. 4 shows some examples of the synthetic
images generated for this study.

Our task is to use the omics and imaging data to predict if
a patient has a certain disease. We use a CNN for modeling
the imaging data and lasso for the omics data and optimize the

Disease Sample ‘l’

Healthy Sample
1.0 1.0 5
08 4 0.8 - <
06 - 0.6 -
L]
0.4 04 - =
0.2 4 0.2 -
00 = T T T T 00 T T T T T
o o~ < © «© =] Plxel_ = o - © o o
=3 =1 =} =} S - Intensity =1 o = =} = -

Fig. 4. Generated images for “healthy” and “disease” samples. One can think
of the image as an abstract form of a patient’s lung, with the darker spots
corresponding to the tumor sites. The intensity of the dark spots on the
disease samples is generated to correlate with the omics data and the signal
in the outcome.
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Fig. 5. Simulation studies on cooperative learning with imaging and omics data. A corresponds to the relatively low SNR setting (SNR = 1) and B to the higher
SNR setting (SNR = 6). For each setting, the left panel shows the misclassification error on the test set for CNN on only images, lasso on only omics, late fusion,
and cooperative learning; the right panel shows the difference in misclassification error relative to late fusion. Here, Coop refers to cooperative learning. For
both settings, the range of p values for cooperative learning to select from is (0, 20). The average p selected in the low SNR setting is 6.8 and in the high SNR

setting is 8.0.

objective for the general form of cooperative learning as in Eq. 1
with the iterative one-at-a-time algorithm outlined in Eq. 2.

We compare cooperative learning to the following methods:
1) only images: a simple one-layer CNN with max pooling and
rectified linear unit activation is applied on the imaging data only;
2) only omics: the standard lasso is applied on the omics data
only; and 3) late fusion: separate models (CNN and lasso) are first
fit on the imaging and omics data, respectively, and the resulting
predictors are then combined through linear LS using a validation
set. We evaluated the performance based on the misclassification
error on a test set, as well as the difference in misclassification
error relative to late fusion.” We consider both low- and high-SNR
settings.” We conducted each simulation experiment 10 times.

The results are shown in Fig. 5. We find that 1) late fusion
achieves a lower misclassification error on the test set than the sep-
arate models; 2) cooperative learning outperforms late fusion and
achieves the lowest test error by encouraging the predictions from
the two views to agree; and 3) cooperative learning is especially
helpful when the SNR is low, while its benefit is less pronounced
when the SNR is higher. The last observation makes sense, because
when the SNR is lower, the marginal benefit of leveraging the
other view(s) in strengthening signal becomes larger.

Multiomics Studies on Labor-Onset Prediction. We applied co-
operative learning (regression) to a dataset of labor onset, collected
from a cohort of women who went into labor spontaneously,
as described in (22). Proteome and metabolome were measured
from blood samples collected from the patients during the last
120 d of pregnancy. The goal of the analysis is to predict time to
spontaneous labor using proteomics and metabolomics data.

The proteomics data contained measurements for 1,322 pro-
teins, and the metabolomics data contained measurements for
3,529 metabolites. We split the dataset of 53 patients into train-
ing and test sets of 40 and 13 patients, respectively.* Both the
proteomics and metabolomics measurements were screened by
their variance across the subjects. We extracted the first time
point for each patient from the longitudinal study and predicted

*Early fusion is not applicable in this setting.

TThe SNR is calculated based on the logits of the probabilities used to generate the class
labels.

*The cohort consisted of 63 patients, as described in (22), but in the public dataset, we only
found 53 patients with matched proteomics and metabolomics data.
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the corresponding time to labor. We conducted the same set of
experiments across 10 different random splits of the training and
test sets.

The results are shown in Table 1. The model fit on the
metabolomics data achieves lower test MSE than the one fit
on the proteomics data. Early and late fusion hurt performance,
as compared to the model fit on only metabolomics. Cooperative
learning gives performance gains over the model fit only on
metabolomics, outperforming both early and late fusion and
achieving the lowest MSE on the test set.

We examined the selected features from cooperative learning
and the other methods by comparing the ranking of the fea-
tures based on the magnitude of their coefficients. All methods
rank sialic acid binding immunoglobulin-like lectin-6 (Siglec-
6), a protein highly expressed by the placenta (23), as the most
important feature for predicting labor onset. As compared to
the other methods, cooperative learning boosts up the ranking
of features such as plexin-B2 (PLXNB2), which is a protein
expressed by the fetal membranes (24), and Activin-A, which is
highly expressed by the placenta as well (22). While factors such
as Siglec-6, PLXNB2, and Activin-A have previously also been
discovered by ref. 22 for labor-onset prediction, Clq was only
identified by cooperative learning as 1 of the top 10 features. Clq
is an important factor involved in the complement cascade, which
influences implantation and fetal development (25), and is worth
further investigation for its role in predicting labor onset.

Cooperative Generalized Linear Models and Cox Regression.
We next describe how cooperative learning can be extended to
generalized linear models (GLMs) (26) and Cox proportional
hazards models (27).

Consider a GLM consisting of three components: 1) a linear
predictor: 7 = X 3; 2) a link function g such that E(Y|X) =
g~ 1(n); and 3) avariance function as a function of the mean: V =
V(E(Y]X)). For cooperative GLMs, we have the linear pre-
dictor as n = X0, + Z0, and an additional agreement penalty
term p||(X 6, — Z0,)||* with the following objective to be

minimized:

J(02,0.) = (X0, + 26, y) + £1|(X0, — 26.) |
10l + A0l (3]
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Table 1. Multiomics studies on labor-onset prediction

Methods Test MSE Relative to early fusion Number of features selected
Mean SD Mean SD Mean

Separate proteomics 475.51 80.89 69.14 81.44 26

Separate metabolomics 381.13 36.88 —25.24 30.91 11

Early fusion 406.37 44.77 0 0 15

Late fusion 493.34 63.44 86.97 68.13 21

Cooperative learning 335.84 38.51 —70.53 32.60 52

The first two columns in the table show the mean and SD of MSE on the test set across different splits of the training and test sets; the third and fourth columns show the MSE difference
relative to early fusion; the last column shows the average number of features selected. The methods include 1) separate proteomics: the standard lasso is applied on the proteomics
data only; 2) separate metabolomics: the standard lasso is applied on the metabolomics data only; 3) early fusion: the standard lasso is applied on the concatenated data of proteomics
and metabolomics data; 4) late fusion: separate lasso models are first fit on proteomics and metabolomics independently and the predictors are then combined through linear LS; and 5)
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cooperative learning (Algorithm 1). The average of the selected p values is 0.9 for cooperative learning. Cooperative learning achieves the lowest test MSE.

where £ is the negative log likelihood of the data. For Cox
proportional hazards models, £ becomes the negative log partial
likelihood of the data.

We make the usual quadratic approximation to Eq. 13, reduc-
ing the minimization problem to a weighted least squares (WLS)
problem, which yields

o1
min S[[|W(z - X6, — Z0.)|” + pll(X 0, — Z6.)|?]
+)‘z||0ZH1+)‘2H02||17 [14]

where z is the adjusted dependent variable and W is the diagonal
weight matrix, both of which are functions of 8, and 6.

This leads to an iteratively reweighted least squares (IRLS)
algorithm:

e Outer loop: Update the quadratic approximation using the

current parameter 8, and 6, i.e., update the working response
z and the weight matrix W.
e Inner loop: Letting

T wi2x wl/2z 5 Wi/i2z G 0,
A\ VX pZ )T 0 )7 \0:)
[15]

solve the following problem

1 ~ J
J(9w702)25||z_Xﬁ”?+>‘z||9Z||l+>‘2||BZH1’ [16]
which is equivalent to Eq. 14.

Some Extensions

Paired Features from Different Views. One can extend coopera-
tive learning to the setting where a feature in one view is naturally
paired with a feature in another view. For example, if the jth
column X; of X is the gene expression for gene j, and Zj; is
the expression of the protein k for which gene j codes. In that
setup, we would like to encourage agreement between X;6,; and
71,0 1, 'This pairing need not exist for all features, but can occur
for a subset of features.

Looking back at our objective function Eq. 4 for two views
in the linear case, we add to this objective a pairwise agreement

penalty of the form

p2 Y (X045 — Z:0.4)° [17]
j,keP

where P is the set of indices of the paired features.

PNAS 2022 Vol. 119 No.38 e2202113119

This additional penalty can be handled easily in the optimiza-
tion framework. For the direct algorithm (Algorithm 1), we simply
add a new row to X and ¥ for each pairwise constraint, while the
one-at-a-time algorithm (Algorithm 2) can be similarly modified.

Modeling Interactions between Views. In our general objective
function Eq. 1, we can capture interactions between features in the
same view, by using methods such as random forests or boosting
for the learners fx and f;. However, this framework does not
allow for interactions between features in different views. Here
is an objective function to facilitate such interactions:

min E 1(y —Ix(X) — f2(Z) — fxz(X, Z))?

2
+ S Ux(X) — f2(2)) + far(X,2),
[18]

_r
2(1-p)

where fxz (X, Z) is a joint function of X and Z, including, for
example, interactions between the features in each view.
The solution to Eq. 18 has fixed points:

y (1=p)fz(Z) fxz(X,2)
fX(X):E[ler_ (1+z) - XZl+p |X}’

B y (1-pfx(X) fxz(X,Z)
fZ(Z)_E[1+p_ (1+),;) B XZ1+p |Z}’

fxz(X, 2) =E[(1 = p)(y — fx (X) = [z(2))|X. 2]. 119]

When p = 0, from Eq. 18, the solution reduces to the additive
model fx (X) + fz(Z) + fxz(X, Z). As p — 1, the joint term
fxy — 0, and we again get the late fusion estimate as the average
of the marginal predictions fx (X ) and fz(Z). To implement this
in practice, we simply insert learners such as random forest or
boosting for fx, fz and fxz. The first two use only features from
X and Z, while the last uses features from both.

Discussion

In this paper, we introduce a method called cooperative learning
for supervised learning with multiple sets of features, or “data
views.” The method encourages the predictions from different
data views to align through an agreement penalty. By varying
the weight of the agreement penalty in the objective, we obtain
a spectrum of solutions that include the commonly used early
and late fusion methods. The method can choose the degree of
agreement (or fusion) in an data-adaptive manner.

Cooperative learning provides a powerful tool for multiomics
data fusion by strengthening aligned signals across modalities and
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allowing flexible fitting mechanisms for different modalities. The
effectiveness of our methodology has implications for improving
diagnostics and therapeutics in an increasingly multiomic world.

Furthermore, cooperative learning could be extended to the
semisupervised setting when we have additional matched data
views on unlabeled samples. The agreement penalty allows us
to leverage the signals in the matched unlabeled samples to our
advantage. In addition, when we have missing values in some data
views, the agreement penalty also allows us to impute one view
from the other(s). Lastly, the method can be easily extended to
binary, count, and survival data.

Materials and Methods

Cooperative Learning with More Than Two Data Views. When we have
more than two views of the data, X1 € R"*P1, X, € R™P2, ..., Xy € R"*Pu,
the population quantity that we want to minimize becomes

M
min E[%(y— 3 iy ()’
m=1

+ 83 (o Ofn) = By, )] 120]

m<m’

We can also have different weights on the agreement penalties for distinct
pairs of data views, forcing some pairs to agree more than others. In addition,
we can incorporate prior knowledge in determining the relative strength of the
agreement penalty for each pair of views.

As with two views, this can be optimized with an iterative algorithm that
updates each fy, (Xn) as follows:

y
E[1 +M=")p
. (1 - p) Zm’;&m fX,,,/ X))
T+M—="1)p

me (Xm) =

o] 1211

As in the two-view setup above, the fitter £(-|X) can be tailored to the data
type of each view.

For regularized linear regression with more than two views, the objective
becomes

M
1
(01,05, 6u) = 5 ly - > Xnbnl '+
m=1

M
5 11X = X0 )| + D" MallOnllr. [22]

m<m’ m=1

Thisis, again, a convex problem.The optimal solution can be found by forming
augmented data matrices as before in Eqs. 6 and 7.

Let
X Xy - Xv—1 Xu
N 0 0
— /X 0 N O 0
X = —\/ﬁ)ﬁ 0 0 \/ﬁXM
0 — /X NI 0o |
0 — /X 0 N
0 0 —/PXu—1  \/pXu
y=@y 0o ... 0),3=(6, & on),  [23]

then the equivalent problem to Eq. 22 becomes

M
1 . -
7 =XBI" + > Anl6nllr. [24]

m=1
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With M views, the augmented matrix in Eq. 23 has n + (“2”) - n rows, which
could be computationally challenging to solve.

Alternatively, the optimal solution 81, 65, . . ., By has fixed points

O = Lasso(X, Y=, An),

whereyy = —

(1) St i Kot O [25]
+M=Tp — :

TFW-1)p

This leads to an iterative algorithm, where we successively solve each subprob-
lem until convergence. For a large number of views, this can be a more efficient
procedure than the direct approach in Eq. 24. We include simulation studies on
cooperative learning for more than two views in S/ Appendix, section 3.

Simulation Procedure for Cooperative Regularized Linear Regres-
sion. The simulation is set up as follows. Given values for parameters
N, Px, Pz: Pus Sus bt Bu, o, we generate data according to the following
procedure:

1. x; € R" distributed i.i.d. MVN(O, I,) forj =1,2,..., px.
2. zy € R" distributed i.i.d. MYN(0, ;) forj=1,2,. .., p..

3. Fori=1,2,...,pu(pucorresponds to the number of latent factors, p, < px
and py, < p.):
a) u; € R" distributed i.i.d. MVN(0, s2/,);
b) xi = xi + te * uj;
) zi=z+t*u.

A X=X .. %) l=|0,22...,2,).

5. U=1us,up ... Up], y=UBs+ € where e R" distributed i.i.d.
MVN(0, o?1,).

There is sparsity in the solution since a subset of columns of X and Z are
independent of the latent factors used to generate y.
Relation to existing approaches. \We have mentioned the close connection of
cooperative learning to early and late fusion: Setting p = 0or 1 gives a version of
each of these, respectively. There are many variations of late fusion, including the
use of stacked generalization to combine the predictions at the last stage (28).
Cooperative learning is also related to “collaborative regression” (29). This
method uses an objective function of the form

by
2

With ¢; penalties added, this is proposed as a method for sparse supervised
canonical correlation analysis. It is different from cooperative leaming in an
important way: Here, X and Z are not fit jointly to the target. The authors state
that collaborative regression is not well suited to the prediction task. We note
that if by = by = by, = 1, each of G, O; are one-half of the LS estimates on
X, Z, respectively. Hence, the overall prediction y is the average of the individual
LS predictions. This late fusion estimate is the same as that obtained from cooper-
ative learning with p = 1.In addition, a related framework based on optimizing
measures of agreement between data views was also proposed in (30), but it is
different from cooperative learning in the sense that the data views are not used
jointly to model the target.

Cooperative learning also has connections with “contrastive learning” (18,
19). This method is an unsupervised learming technique first proposed for learn-
ing visual representations. Without the supervision of y, it learns representations
of images by maximizing agreement between differently augmented "views" of
the same data example. While both contrastive learning and cooperative learning
have a term in the objective that encourages agreement between correlated
views, our method combines the agreement term with the usual prediction error
loss and is thus supervised.

Moreover, the iteration Eq. 2 looks much like the backfitting algorithm for
"generalized additive models” (31). In that setting, each of fy and f; are typically
functions of one-dimensional features X and Z, and the backfitting algorithm
iterations correspond to Eq. 2 with p = 0. In the additive model setting, backfit-
ting is a special case of the Gauss-Seidel algorithm (31). In cooperative learning,
each of X, Z are views with multiple features; we could use an additive model for
eachview, i.e., fx(X) = 3, 9i(X), fz(Z) = 3, hj(Z), where i and j are column
indices of X and Z, respectively. Then each of the iterations in Eq. 2 could be solved
by using a backfitting algorithm, leading to a nested procedure.

bXZ

by
%\nyX0x||2+ |\y—20,||2+7\|X0x—29,\|2. [26]
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We next discuss the relation of cooperative learing to a recently proposed
method for multiview analysis called “sparse integrative discriminant analy-
sis” (SIDA) (32). This method aims to identify variables that are associated
across views, while also able to optimally separate data points into different
classes. Specifically, it combines canonical correlation analysis and linear dis-
criminate analysis by solving the following optimization problem. Let X, =
(X1 - - X k)| € R™P, x, € RP be the data matrix for class k, where k =
1,...,K, and ny is the number of samples in class k. Then, the mean vector
for class k is i, = nik S~ | Xy; the common variance matrix for all classes is

Sy = Zf:1 S (i — ) (X — ;lk)r; the between-class covariance ma-
trix is Sp = 04—y Me(fue — ) (fu — )7, where =1 S°F | mijiy is the
combined class mean vector. Assume that we have two data views X € R"*Px

andZ € R"*" with centered columns, we wanttofind A = [ay, ..., ax_1] and
B=b, ..., bx_1]suchthat

max p - tr(A'S}A + B'S;B) + (1 — p) - tr(A'S,.BB'SL,A)
star(A'SLA) /(K — 1) = 1&tr(B'S,B) /(K — 1) =1,

where S, € RP*P is the sample cross-covariance matrix between X and Z.
Here, tr(-) is the trace function, and p is the parameter that controls the rel-
ative importance of the “separation” term and the "association” terms in the
objective. While SIDA also considers the association across data views by choos-
ing vectors that are associated and able to separate data points into classes,
it solves the problem in a "backward” manner-that is, the features are mod-
eled as a function of the outcome. Cooperative leaming, in contrast, solves
the problem in a "forward" manner (Y ~ X,Z), which is more suitable for
prediction.
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We also note the connection between cooperative learning (regression) with
the “standardized group lasso" (33). This method is a variation of the group lasso
(34) and uses

[1X6x||2 + (12622 [27]

as the penalty term, rather than the sum of squared two norms. It encourages
group-level sparsity by eliminating entire blocks of features at a time. In the
group lasso, each block is a group of features, and we do not expect each block
to be predictive on its own. This is different from cooperative learing, where
each feature block is a data view, and we generally do not want to eliminate
an entire view for prediction. In addition, the standardized group lasso does not
have an agreement penalty. One could, in fact, add the standardized group lasso
penalty (35)to the cooperative learning objective, which would allow elimination
of entire data views.

Data, Materials, and Software Availability. The data associated with
the labor-onset study (22) can be obtained via Zenodo (doi: 10.5281/
zen0do.4509768). The code used to perform the study has been deposited
onto the cooperative-learning GitHub repository (https://github.com/dingdaisy/
cooperative-learning) (36). An open-source R language package for cooperative
learning called "multiview” is available on the CRAN repository. (https://cran.
r-project.org/web/packages/multiview) (37).
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